Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.211
Filter
1.
BMC Infect Dis ; 24(1): 376, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575877

ABSTRACT

There is considerable interest in the use of doxycycline post exposure prophylaxis (PEP) to reduce the incidence of bacterial sexually transmitted infections (STIs). An important concern is that this could select for tetracycline resistance in these STIs and other species. We searched PubMed and Google Scholar, (1948-2023) for randomized controlled trials comparing tetracycline PEP with non-tetracycline controls. The primary outcome was antimicrobial resistance (AMR) to tetracyclines in all bacterial species with available data. Our search yielded 140 studies, of which three met the inclusion criteria. Tetracycline PEP was associated with an increasedprevalence of tetracycline resistance in Neisseria gonorrhoeae, but this effect was not statistically significant (Pooled OR 2.3, 95% CI 0.9-3.4). PEP had a marked effect on the N. gonorrhoeae tetracycline MIC distribution in the one study where this was assessed. Prophylactic efficacy was 100% at low MICs and 0% at high MICs. In the one study where this was assessed, PEP resulted in a significant increase in tetracycline resistance in commensal Neisseria species compared to the control group (OR 2.9, 95% CI 1.5-5.5) but no significant effect on the prevalence of tetracycline resistance in Staphylococcus aureus. The available evidence suggests that PEP with tetracyclines could be associated with selecting tetracycline resistance in N. gonorrhoeae and commensal Neisseria species.


Subject(s)
Gonorrhea , Sexually Transmitted Diseases , Humans , Tetracycline/pharmacology , Tetracycline/therapeutic use , Tetracycline Resistance , Post-Exposure Prophylaxis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Neisseria gonorrhoeae , Microbial Sensitivity Tests , Tetracyclines/pharmacology , Tetracyclines/therapeutic use , Mitomycin/therapeutic use , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Gonorrhea/prevention & control
2.
Helicobacter ; 29(2): e13060, 2024.
Article in English | MEDLINE | ID: mdl-38581134

ABSTRACT

BACKGROUND: Treatment of Helicobacter pylori gastric infection is complex and associated with increased rates of therapeutic failure. This research aimed to characterize the H. pylori infection status, strain resistance to antimicrobial agents, and the predominant lesion pattern in the gastroduodenal mucosa of patients with clinical suspicion of refractoriness to first- and second-line treatment who were diagnosed and treated in a health center in Guayaquil, Ecuador. METHODS: A total of 374 patients with upper gastrointestinal symptoms and H. pylori infection were preselected and prescribed one of three triple therapy regimens for primary infection, as judged by the treating physician. Subsequently, 121 patients who returned to the follow-up visit with persistent symptoms after treatment were studied. RESULTS: All patients had H. pylori infection. Histopathological examination diagnosed chronic active gastritis in 91.7% of cases; premalignant lesions were observed in 15.8%. The three triple therapy schemes applied showed suboptimal efficacy (between 47.6% and 77.2%), with the best performance corresponding to the scheme consisting of a proton pump inhibitor + amoxicillin + levofloxacin. Bacterial strains showed very high phenotypic resistance to all five antimicrobials tested: clarithromycin, 82.9%; metronidazole, 69.7%; amoxicillin and levofloxacin, almost 50%; tetracycline, 38.2%. Concurrent resistance to clarithromycin-amoxicillin was 43.4%, to tetracycline-metronidazole 30.3%, to amoxicillin-levofloxacin 27.6%, and to clarithromycin-metronidazole 59.2%. CONCLUSIONS: In vitro testing revealed resistance to all five antibiotics, indicating that H. pylori exhibited resistance phenotypes to these antibiotics. Consequently, the effectiveness of triple treatments may be compromised, and further studies are needed to assess refractoriness in quadruple and concomitant therapies.


Subject(s)
Anti-Infective Agents , Helicobacter Infections , Helicobacter pylori , Humans , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Metronidazole/pharmacology , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Levofloxacin/pharmacology , Ecuador , Anti-Bacterial Agents/pharmacology , Amoxicillin/pharmacology , Tetracycline/therapeutic use , Tetracycline/pharmacology , Drug Therapy, Combination
3.
Front Immunol ; 15: 1360063, 2024.
Article in English | MEDLINE | ID: mdl-38558809

ABSTRACT

Hepatocellular carcinoma (HCC) and solid cancers with liver metastases are indications with high unmet medical need. Interleukin-12 (IL-12) is a proinflammatory cytokine with substantial anti-tumor properties, but its therapeutic potential has not been realized due to severe toxicity. Here, we show that orthotopic liver tumors in mice can be treated by targeting hepatocytes via systemic delivery of adeno-associated virus (AAV) vectors carrying the murine IL-12 gene. Controlled cytokine production was achieved in vivo by using the tetracycline-inducible K19 riboswitch. AAV-mediated expression of IL-12 led to STAT4 phosphorylation, interferon-γ (IFNγ) production, infiltration of T cells and, ultimately, tumor regression. By detailed analyses of efficacy and tolerability in healthy and tumor-bearing animals, we could define a safe and efficacious vector dose. As a potential clinical candidate, we characterized vectors carrying the human IL-12 (huIL-12) gene. In mice, bioactive human IL-12 was expressed in a vector dose-dependent manner and could be induced by tetracycline, suggesting tissue-specific AAV vectors with riboswitch-controlled expression of highly potent proinflammatory cytokines as an attractive approach for vector-based cancer immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Riboswitch , Mice , Humans , Animals , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Genetic Therapy , Interleukin-12/genetics , Interleukin-12/metabolism , Tetracycline/pharmacology
4.
J Environ Manage ; 357: 120829, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38579474

ABSTRACT

The emergence and increasing prevalence of antibiotic resistance pose a global public risk for human health, and nonantimicrobial pharmaceuticals play an important role in this process. Herein, five nonantimicrobial pharmaceuticals, including acetaminophen (ACT), clofibric acid (CA), carbamazepine (CBZ), caffeine (CF) and nicotine (NCT), tetracycline-resistant strains, five ARGs (sul1, sul2, tetG, tetM and tetW) and one integrase gene (intI1), were detected in 101 wastewater samples during two typical sewage treatment processes including anaerobic-oxic (A/O) and biological aerated filter (BAF) in Harbin, China. The impact of nonantibiotic pharmaceuticals at environmentally relevant concentrations on both the resistance genotypes and resistance phenotypes were explored. The results showed that a significant impact of nonantibiotic pharmaceuticals at environmentally relevant concentrations on tetracycline resistance genes encoding ribosomal protection proteins (RPPs) was found, while no changes in antibiotic phenotypes, such as minimal inhibitory concentrations (MICs), were observed. Machine learning was applied to further sort out the contribution of nonantibiotic pharmaceuticals at environmentally relevant concentrations to different ARG subtypes. The highest contribution and correlation were found at concentrations of 1400-1800 ng/L for NCT, 900-1500 ng/L for ACT and 7000-10,000 ng/L for CF for tetracycline resistance genes encoding RPPs, while no significant correlation was found between the target compounds and ARGs when their concentrations were lower than 500 ng/L for NCT, 100 ng/L for ACT and 1000 ng/L for CF, which were higher than the concentrations detected in effluent samples. Therefore, the removal of nonantibiotic pharmaceuticals in WWTPs can reduce their selection pressure for resistance genes in wastewater.


Subject(s)
Waste Disposal, Fluid , Wastewater , Humans , Waste Disposal, Fluid/methods , Genes, Bacterial , Bacteria/genetics , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Genotype , Drug Resistance, Microbial/genetics , Machine Learning , Pharmaceutical Preparations
5.
Biomed Res Int ; 2024: 7193490, 2024.
Article in English | MEDLINE | ID: mdl-38577704

ABSTRACT

Background: Antimicrobial resistance poses a significant global threat to the treatment of bacterial infections, particularly in low- and middle-income regions such as Africa. This study is aimed at analyzing antimicrobial resistance patterns in vaginal swab samples from patients at the National Health Laboratory from 2019 to 2022. Methods: This retrospective study examined patient records from vaginal swab analyses performed at the National Health Laboratory between January 1, 2019, and December 31, 2022. Ethical approval was obtained from the Ministry of Health Research Ethical Approval and Clearance Committee on 15/02/2023. Results: Of the 622 samples, 83% underwent microbial isolation and identification. Citrobacter spp. exhibited high resistance (>43%) to antibiotics such as cephalexin, ceftazidime, nalidixic acid, ampicillin, gentamicin, and tetracycline. E. coli showed resistance rates of more than 50% to ampicillin, trimethoprim-sulfamethoxazole, and tetracycline. Klebsiella spp. and Proteus spp. exhibited resistance rates that exceeded 47% to specific antibiotics. Gram-positive bacteria have resistance rates of more than 49% with ampicillin, trimethoprim-sulfamethoxazole, tetracycline, oxacillin, vancomycin, and penicillin G. In particular, S. aureus demonstrated no resistance to rifampicin or clindamycin, while Streptococcus spp. showed 100% resistance to rifampicin and vancomycin. Several species, including Proteus species, Streptococcus spp., S. aureus, and Klebsiella spp. exhibited multidrug resistance. Conclusion: Most gram-negative bacteria displayed higher resistance of >45% to ampicillin, trimethoprim-sulfamethoxazole, and tetracycline. Among gram-positive bacteria, a higher resistance rate with ampicillin, trimethoprim-sulfamethoxazole, tetracycline, oxacillin, vancomycin, and penicillin G was recorded. S. aureus showed no resistance to rifampicin and clindamycin, and Strep. spp. indicated 100% resistance to rifampicin and vancomycin. This study highlights critical gaps and areas for further exploration. Expanding the spectrum of antibiotics tested and investigating underlying multidrug resistance mechanisms would provide a more comprehensive understanding of resistance patterns.


Subject(s)
Anti-Bacterial Agents , Vaginal Discharge , Female , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Clindamycin , Vancomycin , Trimethoprim, Sulfamethoxazole Drug Combination , Staphylococcus aureus , Escherichia coli , Eritrea , Rifampin , Retrospective Studies , Drug Resistance, Bacterial , Oxacillin , Gram-Positive Bacteria , Tetracycline/pharmacology , Streptococcus , Ampicillin , Penicillin G , Microbial Sensitivity Tests
6.
Food Microbiol ; 120: 104481, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431327

ABSTRACT

In this study, the tetracycline resistance of Enterococcus faecalis strains isolated from food was determined and molecular analyses of the resistance background were performed by determining the frequency of selected tetracycline resistance genes. In addition, the effect of high-pressure stress (400 and 500 MPa) on the expression of selected genes encoding tetracycline resistance was determined, as well as changes in the frequency of transfer of these genes in isolates showing sensitivity to tetracyclines. In our study, we observed an increase in the expression of genes encoding tetracyclines, especially the tet(L) gene, mainly under 400 MPa pressure. The study confirmed the possibility of transferring genes encoding tetracyclines such as tet(M), tet(L), tet(K), tet(W) and tet(O) by horizontal gene transfer in both control strains and exposed to high-pressure. Exposure of the strains to 400 MPa pressure had a greater effect on the possibility of gene transfer and expression than the application of a higher-pressure. To our knowledge, this study for the first time determined the effect of high-pressure stress on the expression of selected genes encoding tetracycline resistance, as well as the possibility and changes in the frequency of transfer of these genes in Enterococcus faecalis isolates showing sensitivity to tetracyclines and possessing silent genes. Due to the observed possibility of increased expression of some of the genes encoding tetracycline resistance and the possibility of their spread by horizontal gene transfer to other microorganisms in the food environment, under the influence of high-pressure processing in strains phenotypically susceptible to this antibiotic, it becomes necessary to monitor this ability in isolates derived from foods.


Subject(s)
Enterococcus faecalis , Tetracycline Resistance , Enterococcus faecalis/genetics , Tetracycline Resistance/genetics , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Tetracyclines/pharmacology , Microbial Sensitivity Tests
7.
Int J Biol Macromol ; 264(Pt 2): 130653, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458272

ABSTRACT

Novel hydrogel beads based on nanocomposite with outstanding antibacterial and swelling capabilities have been successfully produced as an efficient drug carrier for potential drug delivery systems in wound healing applications. The beads were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and EDX-Mapping analysis. Then, using tetracycline hydrochloride (TCH) as a model drug system, they were studied in vitro for their potential efficiency as pH and temperature dependent sustained drug delivery carriers. Moreover, they were assessed in terms of porosity, swelling degree, encapsulation efficiency, and in vitro release kinetics. Beads released drugs at their highest levels under alkaline circumstances (pH = 8) and at a temperature of 39 °C, with a cumulative TCH release of 96.2 % at 36 h and in accordance with the Weibull kinetics model (R2 = 0.98). Additionally, the disc diffusion experiment demonstrated the strong antibacterial activity of the synthesized beads and offered a feasible and cost-effective wound dressing material for treating infected wounds.


Subject(s)
Nanoparticles , Tetracycline , Tetracycline/pharmacology , Hydrogels/chemistry , Alginates/chemistry , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Delivery Systems , Drug Carriers/chemistry , Wound Healing , Drug Liberation
8.
mSystems ; 9(4): e0112623, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38506511

ABSTRACT

The contamination of the plant phyllosphere with antibiotics and antibiotic resistance genes (ARGs), caused by application of antibiotics, is a significant environmental issue in agricultural management. Alternatively, biocontrol agents are environmentally friendly and have attracted a lot of interest. However, the influence of biocontrol agents on the phyllosphere resistome remains unknown. In this study, we applied biocontrol agents to control the wildfire disease in the Solanaceae crops and investigated their effects on the resistome and the pathogen in the phyllosphere by using metagenomics. A total of 250 ARGs were detected from 15 samples, which showed a variation in distribution across treatments of biocontrol agents (BA), BA with Mg2+ (T1), BA with Mn2+ (T2), and kasugamycin (T3) and nontreated (CK). The results showed that the abundance of ARGs under the treatment of BA-Mg2+ was lower than that in the CK group. The abundance of cphA3 (carbapenem resistance), PME-1 (carbapenem resistance), tcr3 (tetracycline antibiotic resistance), and AAC (3)-VIIIa (aminoglycoside antibiotic resistance) in BA-Mg2+ was significantly higher than that in BA-Mn2+ (P < 0.05). The abundance of cphA3, PME_1, and tcr3 was significantly negatively related to the abundance of the phyllosphere pathogen Pseudomonas syringae (P < 0.05). We also found that the upstream and downstream regions of cphA3 were relatively conserved, in which rpl, rpm, and rps gene families were identified in most sequences (92%). The Ka/Ks of cphA3 was 0 in all observed sequences, indicating that under the action of purifying selection, nonsynonymous substitutions are often gradually eliminated in the population. Overall, this study clarifies the effect of biocontrol agents with Mg2+ on the distribution of the phyllosphere resistome and provides evolutionary insights into the biocontrol process. IMPORTANCE: Our study applied metagenomics analysis to examine the impact of biocontrol agents (BAs) on the phyllosphere resistome and the pathogen. Irregular use of antibiotics has led to the escalating dissemination of antibiotic resistance genes (ARGs) in the environment. The majority of BA research has focused on the effect of monospecies on the plant disease control process, the role of the compound BA with nutrition elements in the phyllosphere disease, and the resistome is still unknown. We believe BAs are eco-friendly alternatives for antibiotics to combat the transfer of ARGs. Our results revealed that BA-Mg2+ had a lower relative abundance of ARGs compared to the CK group, and the phyllosphere pathogen Pseudomonas syringae was negatively related to three specific ARGs, cphA3, PME-1, and tcr3. These three genes also present different Ka/Ks. We believe that the identification of the distribution and evolution modes of ARGs further elucidates the ecological role and facilitates the development of BAs, which will attract general interest in this field.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Genes, Bacterial/genetics , Bacteria , Tetracycline/pharmacology , Carbapenems/pharmacology
9.
Microb Pathog ; 190: 106627, 2024 May.
Article in English | MEDLINE | ID: mdl-38521473

ABSTRACT

Overexpression of the efflux pump is a predominant mechanism by which bacteria show antimicrobial resistance (AMR) and leads to the global emergence of multidrug resistance (MDR). In this work, the inhibitory potential of library of dihydronapthyl scaffold-based imidazole derivatives having structural resemblances with some known efflux pump inhibitors (EPI) were designed, synthesized and evaluated against efflux pump inhibitor against overexpressing bacterial strains to study the synergistic effect of compounds and antibiotics. Out of 15 compounds, four compounds (Dz-1, Dz-3, Dz-7, and Dz-8) were found to be highly active. DZ-3 modulated the MIC of ciprofloxacin, erythromycin, and tetracycline by 128-fold each against 1199B, XU212 and RN4220 strains of S. aureus respectively. DZ-3 also potentiated tetracycline by 64-fold in E. coli AG100 strain. DZ-7 modulated the MIC of both tetracycline and erythromycin 128-fold each in S. aureus XU212 and S. aureus RN4220 strains. DZ-1 and DZ-8 showed the moderate reduction in MIC of tetracycline in E. coli AG100 only by 16-fold and 8-fold, respectively. DZ-3 was found to be the potential inhibitor of NorA as determined by ethidium bromide efflux inhibition and accumulation studies employing NorA overexpressing strain SA-1199B. DZ-3 displayed EPI activity at non-cytotoxic concentration to human cells and did not possess any antibacterial activity. Furthermore, molecular docking studies of DZ-3 was carried out in order to understand the possible binding sites of DZ-3 with the active site of the protein. These studies indicate that dihydronaphthalene scaffolds could serve as valuable cores for the development of promising EPIs.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Imidazoles , Microbial Sensitivity Tests , Molecular Docking Simulation , Multidrug Resistance-Associated Proteins , Staphylococcus aureus , Staphylococcus aureus/drug effects , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Imidazoles/pharmacology , Imidazoles/chemistry , Humans , Drug Resistance, Multiple, Bacterial/drug effects , Ligands , Tetracycline/pharmacology , Naphthalenes/pharmacology , Naphthalenes/chemistry , Ciprofloxacin/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Erythromycin/pharmacology , Ethidium/metabolism , Drug Synergism
10.
Environ Int ; 186: 108594, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38527398

ABSTRACT

The widespread use of copper and tetracycline as growth promoters in the breeding industry poses a potential threat to environmental health. Nevertheless, to the best of our knowledge, the potential adverse effects of copper and tetracycline on the gut microbiota remain unknown. Herein, mice were fed different concentrations of copper and/or tetracycline for 6 weeks to simulate real life-like exposure in the breeding industry. Following the exposure, antibiotic resistance genes (ARGs), potential pathogens, and other pathogenic factors were analyzed in mouse feces. The co-exposure of copper with tetracycline significantly increased the abundance of ARGs and enriched more potential pathogens in the gut of the co-treated mice. Copper and/or tetracycline exposure increased the abundance of bacteria carrying either ARGs, metal resistance genes, or virulence factors, contributing to the widespread dissemination of potentially harmful genes posing a severe risk to public health. Our study provides insights into the effects of copper and tetracycline exposure on the gut resistome and potential pathogens, and our findings can help reduce the risks associated with antibiotic resistance under the One Health framework.


Subject(s)
Anti-Bacterial Agents , Copper , Gastrointestinal Microbiome , Tetracycline , Animals , Copper/toxicity , Tetracycline/pharmacology , Mice , Gastrointestinal Microbiome/drug effects , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Bacteria/drug effects , Bacteria/genetics , Feces/microbiology
11.
J Hazard Mater ; 470: 134166, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38554511

ABSTRACT

UV/peracetic acid (PAA) treatment presents a promising approach for antibiotic removal, but its effects on microbial community and proliferation of antibiotic resistance genes (ARGs) during the subsequent bio-treatment remain unclear. Thus, we evaluated the effects of the UV/PAA on tetracycline (TTC) degradation, followed by introduction of the treated wastewater into the bio-treatment system to monitor changes in ARG expression and biodegradability. Results demonstrated effective TTC elimination by the UV/PAA system, with carbon-centered radicals playing a significant role. Crucially, the UV/PAA system not only eliminated antibacterial activity but also inhibited potential ARG host growth, thereby minimizing the emergence and dissemination of ARGs during subsequent bio-treatment. Additionally, the UV/PAA system efficiently removed multi-antibiotic resistant bacteria and ARGs from the bio-treatment effluent, preventing ARGs from being released into the environment. Hence, we propose a multi-barrier strategy for treating antibiotic-containing wastewater, integrating UV/PAA pre-treatment and post-disinfection with bio-treatment. The inhibition of ARGs transmission by the integrated system was verified through actual soil testing, confirming its effectiveness in preventing ARGs dissemination in the surrounding natural ecosystem. Overall, the UV/PAA treatment system offers a promising solution for tackling ARGs challenges by controlling ARGs proliferation at the source and minimizing their release at the end of the treatment process.


Subject(s)
Anti-Bacterial Agents , Peracetic Acid , Ultraviolet Rays , Wastewater , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Peracetic Acid/pharmacology , Tetracycline/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial/drug effects , Water Purification/methods , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/toxicity , Bacteria/drug effects , Bacteria/genetics , Bacteria/radiation effects , Disinfection/methods , Biodegradation, Environmental
12.
Commun Biol ; 7(1): 336, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493211

ABSTRACT

Tetracycline destructases (TDases) are flavin monooxygenases which can confer resistance to all generations of tetracycline antibiotics. The recent increase in the number and diversity of reported TDase sequences enables a deep investigation of the TDase sequence-structure-function landscape. Here, we evaluate the sequence determinants of TDase function through two complementary approaches: (1) constructing profile hidden Markov models to predict new TDases, and (2) using multiple sequence alignments to identify conserved positions important to protein function. Using the HMM-based approach we screened 50 high-scoring candidate sequences in Escherichia coli, leading to the discovery of 13 new TDases. The X-ray crystal structures of two new enzymes from Legionella species were determined, and the ability of anhydrotetracycline to inhibit their tetracycline-inactivating activity was confirmed. Using the MSA-based approach we identified 31 amino acid positions 100% conserved across all known TDase sequences. The roles of these positions were analyzed by alanine-scanning mutagenesis in two TDases, to study the impact on cell and in vitro activity, structure, and stability. These results expand the diversity of TDase sequences and provide valuable insights into the roles of important residues in TDases, and flavin monooxygenases more broadly.


Subject(s)
Anti-Bacterial Agents , Tetracycline , Tetracycline/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tetracyclines/pharmacology , Mixed Function Oxygenases , Escherichia coli/chemistry , Drug Resistance, Microbial , Flavins
13.
Chem Biodivers ; 21(4): e202301820, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372508

ABSTRACT

As a part of novel discovery of drugs from natural resources, present study was undertaken to explore the antibacterial potential of chalcone Indl-2 in combination with different group of antibiotics. MIC of antibiotics was reduced up to eight folds against the different cultures of E. coli by both chalcones. Among the two compounds, the i. e. 1-(3', 4,'5'-trimethoxyphenyl)-3-(3-Indyl)-prop-2-enone (6, Indl-2), a chalcone derivative of gallic acid (Indl-2) was better along with tetracycline (TET) worked synergistically and was found to inhibit efflux transporters as obvious by ethidium bromide efflux confirmed by ATPase assays and docking studies. In combination, Indl-2 kills the MDREC-KG4 cells, post-antibiotic effect (PAE) of TET was prolonged and mutant prevention concentration (MPC) of TET was also decreased. In-vivo studies revealed that Indl-2 reduces the concentration of TNF-α. In acute oral toxicity study, Indl-2 was non-toxic and well tolerated up-to dose of 2000 mg/kg. Perhaps, the study is going to report gallic acid derived chalcone as synergistic agent acting via inhibiting the primary efflux pumps.


Subject(s)
Chalcone , Chalcones , Chalcone/pharmacology , Chalcones/pharmacology , Escherichia coli , Gallic Acid/pharmacology , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Membrane Transport Proteins , Microbial Sensitivity Tests , Bacterial Proteins/metabolism
14.
J Econ Entomol ; 117(2): 650-659, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38401129

ABSTRACT

Transgenic insect strains with tetracycline repressible (Tet-Off) female-lethal genes provide significant advantages over traditional sterile insect techniques for insect population control, such as reduced diet and labor costs and more efficient population suppression. Tet-Off systems are suppressed by tetracycline-class antibiotics, most commonly tetracycline (Tc) or doxycycline (Dox), allowing for equal sex ratio colonies of transgenic insects when reared with Tc or Dox and male-only generations in their absence. Dox is a more stable molecule and has increased uptake than Tc, which could be advantageous in some insect mass-rearing systems. Here, we evaluated the suitability of Dox for rearing Tet-Off female-lethal strains of Australian sheep blowfly, Lucilia cuprina (Wiedemann, 1830) (Diptera: Calliphoridae), and New World screwworm, Cochliomyia hominivorax (Coquerel, 1858) (Diptera: Calliphoridae), and the effects of dosage on strain performance. For both species, colonies were able to be maintained with mixed-sex ratios at much lower dosages of Dox than Tc. Biological yields of C. hominivorax on either antibiotic were not significantly different. Reduction of Dox dosages in C. hominivorax diet did not affect biological performance, though rearing with 10 or 25 µg/mL was more productive than 50 µg/mL. Additionally, C. hominivorax mating performance and longevity were equal on all Dox dosages. Overall, Dox was a suitable antibiotic for mass-rearing Tet-Off female-lethal L. cuprina and C. hominivorax and was functional at much lower dosages than Tc.


Subject(s)
Diptera , Animals , Female , Male , Diptera/genetics , Calliphoridae , Doxycycline/pharmacology , Australia , Animals, Genetically Modified , Tetracycline/pharmacology , Anti-Bacterial Agents
15.
J Antimicrob Chemother ; 79(4): 815-819, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38334417

ABSTRACT

INTRODUCTION: Antimicrobial resistance in Neisseria gonorrhoeae compromises gonorrhoea treatment and rapid antimicrobial susceptibility testing (AST) would be valuable. We have developed a rapid and accurate flow cytometry method (FCM) for AST of gonococci. METHODS: The 2016 WHO gonococcal reference strains, and WHO Q, R and S (n = 17) were tested against seven clinically relevant antibiotics (ceftriaxone, cefixime, azithromycin, spectinomycin, ciprofloxacin, tetracycline and gentamicin). After 4.5 h incubation of inoculated broth, the fluorescent dye Syto™ 9 was added, followed by FCM analysis. After gating, the relative remaining population of gonococci, compared with unexposed growth control samples, was plotted against antimicrobial concentration, followed by non-linear curve regression analysis. Furthermore, the response at one single concentration/tested antibiotic was evaluated with the intention to use as a screening test for detection of resistant gonococci. RESULTS: A dose-dependent response was seen in susceptible isolates for all tested antimicrobials. There was a clear separation between susceptible/WT and resistant/non-WT isolates for ceftriaxone, cefixime, spectinomycin, ciprofloxacin and tetracycline. In contrast, for azithromycin, only high-level-resistant isolates were distinguished, while resistant isolates with MICs of 4 mg/L were indistinguishable from WT (MIC ≤ 1 mg/L) isolates. For gentamicin, all tested 17 isolates were WT and FCM analysis resulted in uniform dose-response curves. Using a single antibiotic concentration and a 50% remaining cell population cut-off, the overall sensitivity and specificity for resistance detection were 93% and 99%, respectively. CONCLUSIONS: By providing results in <5 h for gonococcal isolates, FCM-based AST can become a rapid screening method for antimicrobial resistance or antimicrobial susceptibility in gonococci.


Subject(s)
Anti-Infective Agents , Gonorrhea , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Neisseria gonorrhoeae , Azithromycin/pharmacology , Ceftriaxone/pharmacology , Spectinomycin/pharmacology , Cefixime/pharmacology , Flow Cytometry , Drug Resistance, Bacterial , Gonorrhea/epidemiology , Anti-Infective Agents/pharmacology , Ciprofloxacin/pharmacology , Tetracycline/pharmacology , Microbial Sensitivity Tests , Gentamicins/pharmacology
16.
Microbiol Spectr ; 12(4): e0332723, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38412527

ABSTRACT

Tigecycline is an antibiotic of last resort for infections with carbapenem-resistant Acinetobacter baumannii. Plasmids harboring variants of the tetracycline destructase gene tetX promote rising tigecycline resistance rates. We report the earliest observation of tet(X3) in a clinical strain predating tigecycline's commercialization, suggesting selective pressures other than tigecycline contributed to its emergence. IMPORTANCE: We present the earliest observation of a tet(X3)-positive bacterial strain, predating by many years the earliest reports of this gene so far. This finding is significant as tigecycline is an antibiotic of last resort for carbapenem-resistant Acinetobacter baumannii (CRAB), which the World Health Organization ranks as one of its top three critical priority pathogens, and tet(X3) variants have become the most prevalent genes responsible for enabling CRAB to become tigecycline resistant. Moreover, the tet(X3)-positive strain we report is the first and only to be found that predates the commercialization of tigecycline, an antibiotic that was thought to have contributed to the emergence of this resistance gene. Understanding the factors contributing to the origin and spread of novel antibiotic resistance genes is crucial to addressing the major global public health issue, which is antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , Tetracycline , Tigecycline/pharmacology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Plasmids , Carbapenems
17.
Epidemiol Infect ; 152: e41, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38403893

ABSTRACT

Foodborne infections with antimicrobial-resistant Campylobacter spp. remain an important public health concern. Publicly available data collected by the National Antimicrobial Resistance Monitoring System for Enteric Bacteria related to antimicrobial resistance (AMR) in Campylobacter spp. isolated from broiler chickens and turkeys at the slaughterhouse level across the United States between 2013 and 2021 were analysed. A total of 1,899 chicken-origin (1,031 Campylobacter coli (C. coli) and 868 Campylobacter jejuni (C. jejuni)) and 798 turkey-origin (673 C. coli and 123 C. jejuni) isolates were assessed. Chicken isolates exhibited high resistance to tetracycline (43.65%), moderate resistance to ciprofloxacin (19.5%), and low resistance to clindamycin (4.32%) and azithromycin (3.84%). Turkey isolates exhibited very high resistance to tetracycline (69%) and high resistance to ciprofloxacin (39%). The probability of resistance to all tested antimicrobials, except for tetracycline, significantly decreased during the latter part of the study period. Turkey-origin Campylobacter isolates had higher odds of resistance to all antimicrobials than isolates from chickens. Compared to C. jejuni isolates, C. coli isolates had higher odds of resistance to all antimicrobials, except for ciprofloxacin. The study findings emphasize the need for poultry-type-specific strategies to address differences in AMR among Campylobacter isolates.


Subject(s)
Anti-Infective Agents , Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Campylobacter , Animals , United States/epidemiology , Anti-Bacterial Agents/pharmacology , Chickens/microbiology , Turkeys/microbiology , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Ciprofloxacin/pharmacology , Tetracycline/pharmacology , Campylobacter Infections/epidemiology , Campylobacter Infections/veterinary , Campylobacter Infections/microbiology
18.
Microb Drug Resist ; 30(2): 82-90, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38252794

ABSTRACT

Staphylococcus aureus is a major, widespread pathogen, and its biofilm-forming characteristics make it even more difficult to eliminate by biocides. Tetracycline (TCY) is a major broad-spectrum antibiotic, the residues of which can cause deleterious health impacts, and subinhibitory concentrations of TCY have the potential to increase biofilm formation in S. aureus. In this study, we showed how the biofilm formation of S. aureus 123786 is enhanced in the presence of TCY at specific subinhibitory concentrations. S. aureus 123786 used in this study was identified as Staphylococcal Cassette Chromosome mec III, sequence type239 and naturally lacking ica operon and atl gene. Two assays were performed to quantify the formation of S. aureus biofilm. In the crystal violet (CV) assay, the absorbance values of biofilm stained with CV at optical density (OD)540 nm increased after 8 and 16 hr of incubation when the concentration of TCY was 1/2 minimum inhibitory concentration (MIC), whereas at the concentration of 1/16 MIC, the absorbance values increased after 16 and 24 hr of incubation. In tetrazolium salt reduction assay, the absorbance value at OD490 nm of S. aureus 123786 biofilms mixed with 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium solution increased after 8 hr when the concentration of TCY was 1/4 MIC, which may be correlated with the higher proliferation and maturation of biofilm. In conclusion, the biofilm formation of S. aureus 123786 could be enhanced in the presence of TCY at specific subinhibitory concentrations.


Subject(s)
Anti-Bacterial Agents , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Staphylococcal Infections/genetics , Tetracycline/pharmacology , Biofilms , Operon/genetics
19.
J Neuroinflammation ; 21(1): 11, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178148

ABSTRACT

The tetracycline transactivator (tTA) system provides controllable transgene expression through oral administration of the broad-spectrum antibiotic doxycycline. Antibiotic treatment for transgene control in mouse models of disease might have undesirable systemic effects resulting from changes in the gut microbiome. Here we assessed the impact of doxycycline on gut microbiome diversity in a tTA-controlled model of Alzheimer's disease and then examined neuroimmune effects of these microbiome alterations following acute LPS challenge. We show that doxycycline decreased microbiome diversity in both transgenic and wild-type mice and that these changes persisted long after drug withdrawal. Despite the change in microbiome composition, doxycycline treatment had minimal effect on basal transcriptional signatures of inflammation the brain or on the neuroimmune response to LPS challenge. Our findings suggest that central neuroimmune responses may be less affected by doxycycline at doses needed for transgene control than by antibiotic cocktails at doses used for experimental microbiome disruption.


Subject(s)
Doxycycline , Gastrointestinal Microbiome , Mice , Animals , Doxycycline/pharmacology , Mice, Transgenic , Lipopolysaccharides , Tetracycline/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Trans-Activators/genetics , Inflammation , Transgenes
20.
Ecotoxicol Environ Saf ; 271: 115918, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38232521

ABSTRACT

Tetracycline antibiotics play a vital role in animal husbandry, primarily employed to uphold the health of livestock and poultry. Consequently, when manure is reintegrated into farmland, tetracycline antibiotics can persist in the soil. Simultaneously, to ensure optimal crop production, organochlorine pesticides (OCPs) are frequently applied to farmland. The coexistence of tetracycline antibiotics and OCPs in soil may lead to an increased risk of transmission of tetracycline resistance genes (TRGs). Nevertheless, the precise mechanism underlying the effects of OCPs on tetracycline antibiotics and TRGs remains elusive. In this study, we aimed to investigate the effects of OCPs on soil tetracycline antibiotics and TRGs using different concentrations of doxycycline (DOX) and pentachlorophenol (PCP). The findings indicate that PCP and DOX mutually impede their degradation in soil. Furthermore, our investigation identifies Sphingomonas and Bacillus as potential pivotal microorganisms influencing the reciprocal inhibition of PCP and DOX. Additionally, it is observed that the concurrent presence of PCP and DOX could impede each other's degradation by elevating soil conductivity. Furthermore, we observed that a high concentration of PCP (10.7 mg/kg) reduced the content of efflux pump tetA, ribosome protective protein tetM, tetQ, and passivating enzyme tetX. In contrast, a low PCP concentration (6.4 mg/kg) only reduced the content of ribosome protective protein tetQ. This suggests that PCP may reduce the relative abundance of TRGs by altering the soil microbial community structure and inhibiting the potential host bacteria of TRGs. These findings have significant implications in understanding the combined pollution of veterinary antibiotics and OCPs. By shedding light on the interactions between these compounds and their impact on microbial communities, this study provides a theoretical basis for developing strategies to manage and mitigate their environmental impact, and may give some information regarding the sustainable use of antibiotics and pesticides to ensure the long-term health and productivity of agricultural systems.


Subject(s)
Pentachlorophenol , Pesticides , Animals , Doxycycline/pharmacology , Pentachlorophenol/toxicity , Soil/chemistry , Tetracycline Resistance/genetics , Soil Microbiology , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Genes, Bacterial , Pesticides/pharmacology , Animal Husbandry
SELECTION OF CITATIONS
SEARCH DETAIL
...